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Abstract. Let p be a prime number and G a finite p-group. We say that G is powerful if [G,G] 6 Gp,
for p odd, or if [G,G] 6 G4, for p = 2. If N is a normal subgroup of G and satisfies [N,G] 6 Np, for
p ≥ 3, or [N,G] 6 N4, for p = 2, then N is said to be powerfully embedded em G. In this talk we
consider the group νq(G), q a non-negative integer, as described for instance by Bueno and Rocco
in [1], which happens to be an extension of the q-tensor square G ⊗q G by G × G. Our purpose is
to address some results concerning νq(G) and G ⊗q G, under the assumption that G is a powerful
p-group, which generalize results for q = 0 due to Moravec. More specifically:

Theorem A. Let G be a powerful, finite p−group and q a non-negative integer. Then

(i) γi(νq(G)) is powerfully embedded in νq(G), for i ≥ 2;

(ii) νq(G)i is powerfully embedded in νq(G), for i ≥ 1.

Here, as usual γi(νq(G)) (resp., νq(G)i) denotes the i-th term of the lower central series (resp.,
derived series) of νq(G).

Let d(G) (resp., exp(G)) denote the minimal number of generators (resp., the exponent) of the
group G.

Theorem B. Under the hypothesis of Theorem A, assume that exp(G) divides q and write d for
d(G). Then

(i) G⊗q G is powerfully embedded in νq(G);

(ii) d(G⊗q G) ≤ d(d+ 1).

In contrast with the case q = 0, for q ≥ 1 the q-tensor square G⊗q G involves a certain subgroup
K � νq(G), which plays an important role in its structure.

Theorem C. Let G be a powerful p-group. Then

(i) exp([νq(G), νq(G)]) divides exp(G);

(ii) exp(K) divides exp(G) if p is odd or if 4 | q;

(iii) exp(K) divides 2 exp(G) if p = 2 and 4 - q.
∗ This is a joint work with Noraí Romeu Rocco.
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